


The Basics
• It’s a digital signature scheme.

• It is an LWE scheme (Learning With Errors) in the ring 

• It involves a trick using a hash function (forcing the signer 
to do steps in a certain order?).





The Ring Rq
Let n be a power of two (e.g., 2048) and let q be a positive 
integer (e.g., 12,681,217).  Consider the ring

Let us say that a vector v = v0 + v1 x + v2 x2 + … in Rq is short if 
every vi  has small absolute value.
Let us say that such a vector v is small if |vi| <= 1 for all i, and
most of the values vi are zero.



The Ring Rq
Suppose that we secretly pick a random short vector s in Rq.  
We then publicly pick random elements a1, a2, a3, … and 
compute

sa1, sa2, sa3, …
If we reveal these values to an adversary, she can easily 
determine s. 
But if we mask them each with random small vectors

sa1+e1, sa2+e2, sa3+e3, … 
then determining s becomes a lot harder.



Basic hardness assumption: The distribution of
( a, sa + e )

is computationally indistinguishable from random.

The Ring Rq



Suppose we are given a vectors u,a in Rq and are asked to find a 
short vector z such that

u       az
(That is, (u – az) is a short vector.)

This must be hard too (otherwise the problem on the previous 
page could be easily solved).

Different forms of the ”hard” problem



Suppose we are given a vectors u,a in Rq and are asked to find a 
short vector z such that

u       az
(That is, (u – az) is a short vector.)

Next suppose that we are given a and allowed to pick u, but it 
must be of the form

u :=   w – H ( [w]M )
where H is a hash function and [ ]M = “most significant bits.”
“Forging” for the upcoming sig.-prot. is similar to solving this.

Different forms of the ”hard” problem





Overview
The signer produces two random-looking elements a,t in Rq
(except that a is invertible).
There is a fixed hash function H that maps bit-strings to 
small elements of Rq.

Verifier

Public key: a,t

Signer
Public key: a,t



Overview
The signer signs a message m with a signature (z,c) where z, 
c are in Rq, z is short and c is small.
The verifier computes w := az – tc, and accepts only if

c = H ( [w]M, m).

Verifier

Public key: a,t

Message: m
Signature: c,z

Signer
Public key: a,t



Overview

Signer

“Faking” a solution to the system          
w = az – tc and          c = H ( [w]M, m)

is hard (?).
But given specific knowledge about how a,t were generated 
(specifically, if t = as + e, where s and e are short) it’s easy.

Verifier
Public key: a,t

Public key: a,t

Message: m
Signature: c,z

Secret key: s,e



Procedures

Gaussian distribution

Definition of t.



Procedures

A solution is constructed to the system from 2 slides ago.
If y, s are short and e is small, then y+sc is short, as desired.



Procedures

Randomness is needed here.  In the full protocol, this 
randomness is drawn by hashing the message itself.





Security claims
The authors claim that their protocol is provably secure in the Quantum 
Random Oracle Model (QROM).  This is established mostly by referring to 
other papers.

E. Alkim, et al.  “Revisiting TESLA in the quantum random oracle   
model.” https://eprint.iacr.org/2015/755.pdf (2017)

The protocol is in a sense a Fiat-Shamir transformation of a certain 
identification scheme (?).  This is another way to approach security (?).

https://eprint.iacr.org/2015/755.pdf


Security claims
The security proofs are based on a few assumptions, including the 
hardness of their version of Ring-LWE.

(Question: What hardness assumptions are made about the hash function?)

Numerical claims about security are based on the “LWE-Estimator” 
software.



Authors’ Response to Comment



Speed

(These schemes address security levels 1, 3, and 5, respectively.)



Size
Some variables (such as “a”) are not stored as-is – a shorter bit string is 
stored and then and expanded using cSHAKE.

The authors claim to have one of the smallest signature sizes against a 
quantum adversary.




